Math 2550
 HW 7 - Part 1
 Spanning, Linear Independence, Bases

1. (a) Consider the vector space $V=\mathbb{R}^{2}$ with field $F=\mathbb{R}$.

List five vectors that lie in the span of $\langle 0,1\rangle,\langle 1,1\rangle,\langle-3,2\rangle$.
(b) Consider the vector space $V=\mathbb{R}^{3}$ with field $F=\mathbb{R}$.

List five vectors that lie in $\operatorname{span}(\{\langle 0,-2,2\rangle,\langle 1,3,-1\rangle\})$.
(c) Consider the vector space $V=P_{1}$ with field $F=\mathbb{R}$.

List five vectors that lie in the $\operatorname{span}(\{2,1+x\})$.
(d) Consider the vector space $V=P_{2}$ with field $F=\mathbb{R}$. List five vectors that lie in the span of $-1-2 x, x^{2}, 1+x+x^{2}$.
2. Consider the vector space $V=\mathbb{R}^{3}$ with field $F=\mathbb{R}$. Let $\vec{u}=\langle 0,-2,2\rangle$ and $\vec{v}=\langle 1,3,-1\rangle$.
Which of the following vectors lie in the span of \vec{u} and \vec{v} ? If a vector does lie in the span then express it as a linear combination of \vec{u} and \vec{v}.
(a) $\langle 2,2,2\rangle$
(b) $\langle 3,1,5\rangle$
(c) $\langle 0,4,5\rangle$
(d) $\langle 0,0,0\rangle$
3. Consider the vector space $V=P_{3}$ with field $F=\mathbb{R}$. Let $\overrightarrow{p_{1}}=2+x+4 x^{2}$, $\overrightarrow{p_{2}}=1-x+3 x^{2}$, and $\overrightarrow{p_{3}}=1+x^{3}$.
Which of the following vectors lie in $\operatorname{span}\left(\left\{\overrightarrow{p_{1}}, \overrightarrow{p_{2}}, \overrightarrow{p_{3}}\right\}\right)$? If a vector does lie in the span then express it as a linear combination of $\overrightarrow{p_{1}}, \overrightarrow{p_{2}}$, $\overrightarrow{p_{3}}$.
(a) $3+2 x+x^{2}+2 x^{3}$
(b) $1+x$
(c) 0
(d) $4-x+10 x^{2}$
4. Are the following vectors linearly independent or linearly dependent in the respective vector spaces?
(a) $\overrightarrow{u_{1}}=\langle 1,-1\rangle, \overrightarrow{u_{2}}=\langle 2,1\rangle$ in $V=\mathbb{R}^{2}$ with $F=\mathbb{R}$.
(b) $\overrightarrow{u_{1}}=\langle 3,-1\rangle, \overrightarrow{u_{2}}=\langle 4,5\rangle, \overrightarrow{u_{3}}=\langle-4,7\rangle$ in $V=\mathbb{R}^{2}$ with $F=\mathbb{R}$.
(c) $\overrightarrow{v_{1}}=\langle-3,0,4\rangle, \overrightarrow{v_{2}}=\langle 5,-1,2\rangle, \overrightarrow{v_{3}}=\langle 1,1,3\rangle$ in $V=\mathbb{R}^{3}$ with $F=\mathbb{R}$.
(d) $\overrightarrow{p_{1}}=3-2 x+x^{2}, \overrightarrow{p_{2}}=1+x+x^{2}, \overrightarrow{p_{3}}=6-4 x+2 x^{2}$ in $V=P_{2}$ with $F=\mathbb{R}$.
(e) $\overrightarrow{p_{1}}=1, \overrightarrow{p_{2}}=1+x, \overrightarrow{p_{3}}=1+x+x^{2}$ in $V=P_{2}$ with $F=\mathbb{R}$.
5. Determine if the following vectors are linearly independent or linearly dependent in \mathbb{R}^{3}.
(a) $\overrightarrow{v_{1}}=\langle 2,2,2\rangle, \overrightarrow{v_{2}}=\langle 4,1,2\rangle, \overrightarrow{v_{3}}=\langle 0,1,1\rangle$
(b) $\overrightarrow{v_{1}}=\langle 2,-1,3\rangle, \overrightarrow{v_{2}}=\langle 4,1,2\rangle, \overrightarrow{v_{3}}=\langle 8,-1,8\rangle$
6. Determine which of the sets of vectors from problem (5) above is a basis for \mathbb{R}^{3}.
7. Determine which of the following sets is a basis for $V=\mathbb{R}^{3}$ over the field $F=\mathbb{R}$.
(a) $\overrightarrow{v_{1}}=\langle 4,-1,2\rangle, \overrightarrow{v_{2}}=\langle-4,10,2\rangle$
(b) $\overrightarrow{v_{1}}=\langle-3,0,4\rangle, \overrightarrow{v_{2}}=\langle 5,-1,2\rangle, \overrightarrow{v_{3}}=\langle 1,1,3\rangle$
(c) $\overrightarrow{v_{1}}=\langle-2,0,1\rangle, \overrightarrow{v_{2}}=\langle 3,2,5\rangle, \overrightarrow{v_{3}}=\langle 6,-1,1\rangle, \overrightarrow{v_{4}}=\langle 7,0,-2\rangle$
8. Determine which of the following sets is a basis for $V=P_{2}$ over the field $F=\mathbb{R}$.
(a) $\overrightarrow{p_{1}}=1, \overrightarrow{p_{2}}=1+x, \overrightarrow{p_{3}}=1+x+x^{2}$
(b) $\overrightarrow{p_{1}}=6-x^{2}, \overrightarrow{p_{2}}=1+x+4 x^{2}, \overrightarrow{p_{3}}=8+2 x+7 x^{2}$
9. (a) Show that the two vectors $\{\langle 1,4\rangle,\langle 3,-2\rangle\}$ form a basis for \mathbb{R}^{2}.
(b) Find the coordinates of $\langle-7,14\rangle$ with respect to the ordered basis $\beta=[\langle 1,4\rangle,\langle 3,-2\rangle]$.
(c) Find the coordinates of $\langle 3,-12\rangle$ with respect to the ordered basis $\beta=[\langle 1,4\rangle,\langle 3,-2\rangle]$.
10. (a) Show that the vectors $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\right\}$ form a basis for $M_{2,2}$.
(b) Find the coordinates of $\left(\begin{array}{ll}1 & -2 \\ 0 & -3\end{array}\right)$ with respect to the ordered basis

$$
\beta=\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right]
$$

(c) Find the coordinates of $\left(\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right)$ with respect to the ordered basis

$$
\beta=\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right]
$$

11. In problem 8a you showed that $1,1+x, 1+x+x^{2}$ is a basis for P_{2}.
(a) Find the coordinates of $1-x+2 x^{2}$ with respect to the ordered basis $\beta=\left[1,1+x, 1+x+x^{2}\right]$.
(b) Find the coordinates of x with respect to the ordered basis $\beta=$ $\left[1,1+x, 1+x+x^{2}\right]$.
12. Show that the vector space $V=M_{2,2}$ of all 2×2 matrices over the field $F=\mathbb{R}$ has dimension 4 .
13. Show that the vector space $V=P_{n}$ over the field $F=\mathbb{R}$ has dimension $n+1$.
